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The accuracies of neural network and statistical methods were similar for classi- 
fying the origin of black teas from their phenolic composition. When the data 
are non-normal, as was the case for the pine resin samples, the neural network 
offered a significant improvement. Neural networks were less accurate than step- 
wise multiple regression as a model for predicting black tea score and price 
from their chemical composition and sensory attributes. The accuracy improved 
and the training time was reduced when training variables chosen by stepwise 
multiple regression were selected. An advantage of the neural network model is 
that a single model could predict several parameters simultaneously. The selec- 
tion criterion of neural networks could be estimated by inspection of the most 
positive weights derived from two-layer trained networks. 

INTRODUCTION 

Neural networks have been the focus of much interest 
with a great deal of the attention having been centred 
on speech and image recognition. They are modelled 
on the neurons in the brain and the synapses that con- 
nect them; this enables a computer to simulate many of 
the brain's abilities. Rather than being programmed for 
a particular application, neural networks can 'learn' 
during the training process to arrive at a generalised 
solution. They are also thought to be more robust to 
noise and inconsistencies in the data than many other 
pattern recognition methods (Lippmann, 1987 ; Kamal 
et  al., 1989; Anon, 1992). 

In chemical analysis, neural networks have been used 
to classify sugar alditols from their NMR spectra 
(Thomsen and Meyer 1989), in spectroscopic calibra- 
tion (Long et al., 1990; Gemperline et  al., 1991; Song 
et al., 1992); to identify partially methylated alditol 
acetates by their mass spectra (Sellers et  al., 1990); in 
pattern recognition of chromatographic data (Long et  
al., 1991); in an electronic odour detector (Chang et  al., 
1991; Persaud, 1992); and an electronic wine taster 
(Anon 1992). 

In sensory science, neural networks have been pro- 
posed as a method of advancing the understanding of 
complex unstructured tasks involving human insight 
and judgement (Galvin & Waldrop 1990) and have 
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been used to model the sensory determination of colour 
quality of tomato and peaches (Thai & Shewfelt, 1991). 

Artificial neural networks appear to offer advantages 
over current pattern recognition methods. The aim of 
this study is to compare neural network methods with 
statistical procedures (regression and multivariate) used 
at NRI (McDowell et  al., 1991; Taylor et  al., 1992) 
used for pattern recognition and quality prediction 
from chromatographic and sensory data. 

MATERIALS AND METHODS 

Neural network software 

A commercially available feed-forward neural network 
(Brainmaker V2.3, California Scientific Software, CA, 
USA) was used. It offered the choice of several transfer 
functions (sigmoidal, linear, linear threshold, gaussian, 
step) and the ability to alter the number of hidden 
layers and the number of neurons in each hidden layer. 

The network software was run using a 25 MHz 
386SX IBM-compatible computer (Elonex PC-320X) 
fitted with 4 megabytes (MB) RAM, a 3.5 inch floppy 
and 40 MB hard drive. 

Statistical analysis 

Statistical analysis (regression, multivariate) was carried 
out using either Statgraphics (STSC Inc, MD, USA) or 
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Genstat (Numerical Algorithms Group Ltd, Oxford, 
UK). 

Sampling method for evaluating the neural network and 
statistical models 

Sampling was by the hold-out method (Yoon et al., 
1993). Each data set was randomly divided into four 
quarters, which, in turn, were withheld. Using the re- 
maining three quarters, neural network and statistical 
models were developed to predict the outcome for each 
withheld quarter. 

Pattern recognition data sets 

Four data sets (detailed below), obtained either by high 
performance liquid chromatography (HPLC) or gas 
chromatography (GC), were evaluated. 

(a) A set of 77 black teas, comprising 12 phenolic 
constituents (theaflavins, flavonol glycosides and 
unknowns, possibly thearubigins) from seven 
origins (Assam, Northern India, Bangladesh, Sri 
Lanka, Kenya, Tanzania and Malawi); chemical 
analysis was carried out by HPLC (McDowell et 
al., 1991). 

(b) A set of 96 black teas, comprising 37 phenolic 
constituents (theaflavins, flavonol glycosides and 
unknowns, possibly thearubigins) from 23 tea 
estates (African Highlands, Bargang, Bulwa, 
Deundi, Diyyagami West, Kangaita, Kapchorua, 
Kaporet, Limbuli, Litein, Lupembe, Makwasa, 
Mukumbani, Nyankoba, Ogembo, Phulbari, 
Ragalla, Ratelshoek, Tenduet, Tombe, Torokahuna, 
Toromityana, Tshivase); chemical analysis was 
carried out by HPLC (McDowell et al., 1991). 

(c) The same data set as in (b), except the teas were 
classified into nine countries (Kenya, Tanzania, 
Uganda, India, Bangladesh, Sri Lanka, Malawi, 
Republic of South Africa, and Zimbabwe) in- 
stead of estates. 

(d) A set of 158 xylem resin samples (Pinus caribaea 
var. caribaea. P. caribaea var. bahamensis, P. 
caribaea var. hondurensis) comprising six resin 
acid constituents from nine provenances in 
Zimbabwe; chemical analysis was carried out by 
GC (Coppen et al., 1993). 

Regression data sets 

Three data sets obtained either by HPLC, GC or 
sensory evaluation were evaluated. 

(e) A subset of 35 black teas from those used in (a). 
These varied by price as assessed by professional 
tea tasters. 

(f) A subset of the remaining 42 black teas from 
those used in (a). These varied by score as as- 
sessed by professional tea tasters. 

(g) A set of 30 black teas from six regions (Kenya, 
Assam, Uganda, Sri Lanka, Malawi, 

Bangladesh) which were assessed by a sensory 
panel at NRI using 12 attributes (flowery, earthy, 
smoky, brown, red, bright, clarity, sour, bitter, 
astringent, strength, lively). These were com- 
pared with the score (strength and colour, brisk 
and bright, quality and flavour, milk) as deter- 
mined by professional tea tasters. 

RESULTS AND DISCUSSION 

Artificial neural networks are thought to have the abil- 
ity to 'learn' during a training process where they are 
presented with a sequence of stimuli (inputs) and a set 
of expected responses (outputs). Learning is said to 
happen when the artificial neural network arrives at a 
generalised solution for a class of problems. Compared 
with biological intelligence, the size of the artificial neu- 
ral network used in this study has been reported to be 
about halfway between a worm and a cockroach 
(Lawrence, 1991). 

The basic processing element of an artificial neural 
network is a neuron or node (Fig. 1). These are 
analogous to theoretical models of neurons in bio- 
logical systems. Each node has a series of weighted 
inputs, w,, which may be either external signals or the 
outputs from other neurons. The inputs are equivalent 
to synapses and the weights represent the strengths of 
synaptic connections. These may be positive or nega- 
tive in sign, corresponding to excitatory or inhibitory 
inputs in the system. The sum of the weighted inputs 
is transformed by a transfer function (linear or non- 
linear). 

A network of such neurons is shown in Fig. 2. This 
is an example of a feed-forward network where the out- 
put from each neuron is not dependent on its previous 
values. Feed-forward networks consist of an input 
layer, a hidden layer and an output layer. As an exam- 
ple, the inputs are the amounts of each chemical com- 
ponent aj...a,. The input nodes transfer the weighted 
input signal to the nodes in the hidden layer. A connec- 
tion between node i in the input layer and node j in the 
hidden layer is represented by the weighting factor wji. 
Hence, there is a vector of weights wj for each of J 

input•• neuron 

slgna 

weights 

Fig. 1. Schematic diagram for an artificial neural network 
neuron or mode. 
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Fig. 2. Architecture for a three-layer back-propagation 
neural network. 

neurons in the hidden layer. These weights are adjusted 
in the learning process. Each layer also has a bias input 
to adjust for any non-zero offsets in the data. The out- 
put of each hidden neuron is a function of the sum of 
that neuron's weighted inputs. 

During the learning procedure, a series of input 
patterns with their corresponding expected output 
values are presented to the network in an iterative 
fashion while the weights are adjusted. The error in the 
expected output is back-propagated through the net- 
work to determine adjustments to the weights. The 
training process is concluded when the desired level of 
precision between the expected output and the actual 
output is achieved. 

Methods of training neural networks 

The neural network software offered a variety of 
options concerning training the network. These were 
assessed to evaluate their influence on the efficiency of 
training. 

Transfer function 
The sum of the weighted inputs to each neuron is 
transformed by a transfer function (sigmoidal, linear, 
linear threshold, gaussian and step). Of these functions 
only the sigmoidal function with a gain of 1 (Fig. 3) 
was suitable for successfully training a network. A 
particular advantage of this function is that it caters for 
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Fig. 3. Sigmoid trans~r ~nction (gain = 1). 

non-linear relationships. This agreed with other similar 
work (Long et al., 1990, 1991). 

Number of hidden layers and neurons 
The number of hidden layers and neurons in each 
layer could be varied to a maximum nine hidden layers 
and 512 neurons in any model. If they are too few, the 
network fails to learn. Adding more neurons has been 
reported as being similar to increasing the number of 
principal components in principal components regres- 
sion (Long et al., 1990). However too many neurons 
and the network is slow to train and may memorise 
the training set rather than encoding the generalised 
solution. 

In this study, a series of trial and error runs revealed 
that optimisation was best achieved by starting with a 
simple two-layer network, followed by inserting hidden 
layers and neurons until no further improvement in the 
network perfohnance was noted. Most data sets evalu- 
ated required the addition of one or two hidden layers. 

Methods of determining the completion of training 
Judging the completion of training is crucial. An inade- 
quately trained network may make guesses; if over- 
trained, it may memorise instead of generalising. The 
neural network software used in this study offered two 
methods of assessing the completion of training. These 
were training until the network could predict the value 
of every training fact to within a specified degree of 
accuracy (usually 90% or greater), or by periodic evalu- 
ation of testing facts that are separate from the training 
set. 

Of the two routines, the latter was preferred because 
this tested the ability of the network to generalise and 
predict rather than its ability to recall. Figure 4 shows 
an example comparing the two learning methods. In 
this instance, after 900 runs (single pass through the 
entire training set), the network could predict all the 
training facts with an accuracy of 90% or greater. The 
test set indicates that the network achieved a training 
accuracy of between 55 and 65% after 20 runs and that 
this did not improve with prolonged training. There- 
fore the latter method could be used to reduce the 
training time with no loss of performance. 

/--',v / $_ J r h /  

/ /  

~ ,to / /  

'i 
Training 

Fig. 4. Compatrison of neural network training techniques. 
(--) Test set, (--) training set. 
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Fig. 5. HPLC chromatogram of phenolic compounds in 
black tea. Where 1 and 2, flavonol glycoside (X1-4); 3-5, 
unknown (X5-7); 6, rutin (FG1); 7, isoquercetin (FG2); 8, 
quercitin glycoside (FG3); 9, flavonol glycoside (X8); 10 
and 11, kaempferol glycosides (FG4 and FG5); 12, flavonol 
aglycone and theaflavin (F, TF1); 13, theaflavin-3-gallate 
(TF2); 14, theaflavin-3'-gallate (TF3); 15, theaflavin-3,3'- 

digallate (TF4). 

Optimum number of  output neurons 
Where there is more than one possible outcome, the 
neural network can be either trained to predict one 
output fact at a time (i.e. a single output neuron), or it 
can be trained to offer several outcomes (multiple out- 
put neurons). Of the training sets evaluated in this 
study little difference between the network designs was 
noted. Multiple output neural networks were preferred 
as these simplified the training. 

Classification of  tea and resin samples from their chro- 
matographic data 

Three data sets, derived from HPLC or GC, were used 
to compare the effectiveness of neural networks with 
statistical methods currently used at NRI. 

Figures 5 and 6 show example HPLC or GC chro- 
matograms for the black tea (Sets a, b, c) and resin 
acids (Set d). 

Considering the statistical procedure, the discrimi- 
nant functions (DF) derived using canonical variates 
analysis (CVA) were used to predict the origin of the 
unknown samples based on their chemical composition. 
This prediction can be gauged by applying the DF as 
an allocation rule to the samples included in each set. 

lj 5 6 

0 Time (min) 65 

Fig. 6. GC chromatogram of methyl esters of resin acids 
in Pinus caribaea. Where 1, pimaric acid; 2, levopimaric + 
palustric acid; 3, isopimaric acid; 4, dehydroabietic acid; 

5, abietic acid; 6, neoabietic acid. 

Table 1. Classification of 77 black teas (Set a) by neutral net- 
work and statistical methods a 

Result Actual 

A B K M NI SL T 

Neural network model 
A 61 13 5 60 40 
B 28 87 20 
K 80 5 20 
M 85 
NI 6 
SL 6 5 50 
T 20 10 

Statistical model 
A 45 17 6 40 20 
B 22 70 6 40 
K 4.__00 
M 88 
NI 22 13 20 
SL 11 20 60 
T 60 

100 

100 

a A ,  Assam; B, Bangladesh; K, Kenya; M, Malawi; NI, 
Northern India; SL, Sri Lanka; T, Tanzania. 

For each data set the optimum neural network archi- 
tectures were 11, 11, 11, 7 for Set (a), 37, 37, 23 for Set 
(b), 37, 37, 9 for Set (c) and 6, 100, 30, 9 for Set (d); 
where in each series the first and last numbers refer to 
the number of input and output neurons, respectively, 
and intermediate numbers refer to the number of 
neurons in each hidden layer. In each case, one or two 
hidden layers were required for the network to train 
effectively. The addition of hidden layers suggests that 
the relationship between origin and chemical composi- 
tion for each data set is non-linear. 

Tables 1-4 show the comparative performance of the 
neural network and statistical methods in classifying 
the samples in each set using the hold-out procedure. 
For each set, the neural network was more effective in 
correctly classifying the samples than the statistical 
procedure (Table 5). However, the improvement varied, 
being relatively small for Sets b (64-68%) and c 
(89-91%) and larger for Sets a (58-69%) and d 
(41-76%). The improved performance for the resin acid 
data (Set d) might be explained by its non-normality, 
where the chemical characteristics are grouped into 
several discrete groups as opposed to a continuous 
response (Birks & Kanowski, 1988). In the case of the 
chemical composition of the tea, processing may result 
in a more normal distribution of the data. 

Inspection of Tables 1-4 also indicates that both 
techniques met similar difficulties in classifying certain 
samples. For example, in Set (a) neither model could 
correctly classify the black teas from Northern India or 
Tanzania. Also where mis-classifications occurred, they 
tended to be similar for both methods. 

Other studies have reported equivalent verdicts. 
Neural networks have been reported to out-perform 
discriminant analysis methods in predicting bond- 
ratings and stock-price performance (Yoon et al., 1993) 
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Result Actual 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23 

Neural network model 
1 50 33 
2 
3 100 100 
4 34 
5 
6 
7 
8 50 
9 

10 
11 
12 
13 
14 
15 33 
16 
17 
18 
19 
20 
23 

100 
33 

34 

33 

50 

83 17 50 8 

83 
17 

61 29 
31 64 

30 

94 
10__0 33 

3__0_0 
6 67 

30 

33 

67 

Actual 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 

Statistical model 
1 
2 
3 
4 
5 50 
6 
7 
8 50 
9 

10 
11 
12 
13 
14 
15 
16 
17 100 
18 
19 
20 
23 

100 
6_77 67 

67 
10___Q 50 100 

33 33 33 
50 

8 7 

8 7 
83 33 

83 50 50 
7 

62 7 
14 58 

100 100 
100 14 100 

50 67 50 
17 100 

8 
17 100 

a 1, African Highlands; 2, Bargang; 3, Bulwa; 4, Deundi; 5, Diyyagami West; 6, Kangaita; 7, Kapchorua; 8, Kaporet; 9, Limbuli; 
10, Litein; 11, Lupembe; 12, Makwasa; 13, Mukumbani; 14, Nyankoba; 15, Ogembo; 16, Phulbari; 17, Ragalla; 18, Ratelshoek; 
19, Tenduet; 20, Tombe; 21,Torokahuna; 22, Toromityana; 23, Tshivase. 

and tsetse-fly distribution in Zimbabwe (Ripley, 1993). 
Other statistical classification procedures, such as K 
nearest neighbour (KNN), have been reported to be as 
effective as neural networks (Ripley, 1993) and derive 
the solution in a considerably shorter time. However, 
in the pattern recognition of  jet fuel chromatographic 
data (Long et al., 1991) and simulated active sonar 
waveforms (Chen, 1991), neural networks offered im- 
proved results over the K N N  and soft independent 
modelling of class analogy (SIMCA) techniques. 

Examination of  the weight matrix from a trained 
neural network has been proposed as a method of  
determining which input neurons are more vital for the 
determination of  the network output values (Long et 
al., 1991; Thai & Shewfelt, 1991). Inhibitory weights 
with a negative value indicate the regions which are 
not contributing to the outcome of  the network. In 
particular, two layer networks have been proposed as 
this simplifies the matrix (Thai & Shewfelt, 1991). 

Table 6 shows a two-layer weight matrix for Set (a); 
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Table 3. Classification of 96 black teas (Set c) by country of 
origin" 

Result Actual 

K T U I B S M SA Z 

Table 5. Percent correct classification of black tea and resin 
acid samples by neural and statistical methods (Sets a-d) 

Data set Commodity Correct % 

Neural Statistical 

Neural network model 
K 85 14 
T 10 72 12 
u 5 88 
I 
B 
S 14 
M 
SA 
Z 

100 
100 

86 20 
14 80 

50 

50 

Statistical model 
K 90 
T 5 86 
U 
I 
B 
S 5 14 
M 
Z/SA 

12 4 
88 20 

89 
4 10__Q 
4 86 20 

14 60 
100 

"K, Kenya; T, Tanzania; U, Uganda; I, India; B, Bangladesh; 
S, Sri Lanka; M, Malawi; SA, Republic of South Africa; Z, 
Zimbabwe 

the weights greater than 1.0 are highlighted in bold 
type. This suggests which input neurons (phenolic 
constituents) the network associates with each black tea 
origin. The network indicates that discrimination in- 
volves all the chemical components. The most positive 
weight for each tea was as follows: TF4 (Assam), FG3 
(Bangladesh), TF2 (Kenya, Northern India), X1,4 

Table 4. Comparison of neural network and statistical 
models for classifying 158 samples of resin acids (Set d) a 

Actual provenance 

1 2 3 4 5 6 ~ 7 8 9 

1 79 6 14 
2 66 
3 16 83 18 
4 6 6 7___66 26 
5 5 6 11 6 6_99 5 
6 11 5 88 11 14 6 
7 5 6 6 79 12 
8 65 6 
9 5 5 7 76 

Stat~ticalmodel 
1 63 6 11 21 17 
2 5 44 18 11 5 
3 17 56 29 21 6 
4 5 6 22 35 26 11 
5 27 16 18 37 11 
6 12 35 15 21 24 
7 5 6 35 21 6 
8 11 18 11 37 12 
9 5 11 15 21 35 

1, P. caribaea var. caribaea; 2-5, P. caribaea var. bahamen- 
sis; 6-9, P. caribaea var hondurensis. 

(a) Country Tea 69 58 
(b) Estate Tea 68 64 
(c) Country Tea 91 89 
(d) Provenance Pine 76 41 

(Malawi) and FG5 ( Sri Lanka and Tanzania). In the 
case of  the Assam, Northern India and Kenya teas, the 
theaflavin components TF2 and TF4 were important  in 
their classification. This selection is supported by com- 
mercial tea tasters who assign high scores for bright- 
ness and briskness in these teas and that the theaflavin 
components correlate with these attributes (McDowell 
et al., 1991). It' should be noted that this matrix relates 
only to linear relationships. The opt imum network re- 
quired the addition of two hidden layers, suggesting 
that non-linear relationships are necessary for optimal 
discrimination between the regions. Similar trends were 
noted for the other data sets. 

A further factor to consider when assessing the 
weight matrix of  a neural network is that the weights 
are assigned only within the context of  the training set 
used. For  example, the authors have trained a simple 
network to classify fruit and vegetables by shape and 
size (i.e. round, large, small, etc.) and colour (i.e. red, 
green, yellow, etc.). In this training set, tomatoes were 
described as round, small and red. Since tomatoes were 
the only red commodity in the set, inspection of the 
weight matrix revealed that the network used only 
this attribute to classify them, ignoring the shape and 
size characteristics. However, the size and shape of 
tomatoes does become important in their classification 
when strawberries are included in the training set, as 
these are also red, but have a different shape. 

Table 6. Weight matrix for country prediction of 77 black teas 
by phenolic composition (Set a) ° 

A B K M NI SL T 

X 1,4 1"37 
X8 - 1-44 
X5,7 0.10 
FG1,2 2-32 
FG3 -2.74 
FG4 -2.25 
FG5 -0.19 
F,TF1 0.03 
TF2 -2.96 
TF3 -0.41 
TF4 3"36 

-7.99 0.22 6.23 1.09 0.22 -3.16 
-3.00 1.22 2.65 -1-18 -0.12 -0-16 

0-25 -3.19 -1-10 0.85 0-12 -1.88 
-2.05 2.84 5.96 -0.70 -2.41 -1.37 

2.53 1"62 1.01 - 1.50 2.50 1.89 
-4.53 -1.30 0-04 -2.30 3.41 1.89 
-2-81 1-37 -5-19 0.74 4-32 5-00 
-4.25 2.35 -0.70 -2-09 -4.80 0-42 
-1 .79  3-22 -3.30 3.06 -0.52 -4.27 
-0.69 1-39 -2.05 0.70 -2.90 -0.93 
-3.01 -1.43 -6.06 -0.61 1.23 -3.63 

X1,4, flavonol glycoside; X5,7, unknown; X8, flavonol 
glycoside; FG1,2, rutin and isoquercetin; FG3, quercetin 
glycoside; FG4 and FG5, kaempferol glycosides; F,TF1, 
flavonol aglycone and theaflaven; TF2, theaflavin-3-gallate; 
TF3, theaflavin-Y-gallate; TF4, theaflavin-3,Y-digallate; A, 
Assam; B, Bangladesh; K, Kenya; M, Malawi; NI, Northern 
India; SL, Sri Lanka; T, Yanzania. 
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Regressions of  black tea for price and score as 
determined by professional tea tasters and phenolic 
constituents by their chemical composition 

Three data sets, derived from HPLC, GC and sensory 
evaluation were used to compare the effectiveness of  
neural networks against statistical regression methods 
(multivariate stepwise) currently used at NRI. 

Considering the statistical analysis of Sets e, f and g, 
stepwise regression (McDowell et al., 1991), using an F- 
ratio of  4 as an inclusion and exclusion criterion for all 
potential phenolic components or sensory attributes, 
was used. For  Sets e and f, the phenolic compounds 
TF2, FG5, F,TF1, TF4 and FG5 were suggested 
respectively. A more complex stepwise regression 
analysis on the intra-origin modelling effect (inclusion 
and exclusion F-ratio of  4) on Sets e and f suggested 
the phenolic components F,TF1 and X8, respectively; 
this model allows for the fact that the professional tea 
taster may know the origin of each tea before tasting 
them. Considering the sensory evaluation of  the teas by 
a trained consumer panel (Set g), stepwise regression 
indicated the sensory panel attribute red as a predictor 
of  the professional tasters terms strength and colour, 
and bitter as predictors of  the professional tasters 
attributes of  brisk and bright, quality and flavour and 
with milk. 

For each data set, the optimum network architec- 
tures were 12, 12, 1 for Set e and 12, 12, 1 for Set f. 
Seven additional input neurons were included in these 
models to cater for the intra-regional effects; the net- 
work architectures were 19, 19, 1 for Set (e; intra- 
origin), and 19, 19, 1 for Set (f; intra-origin). For  Set g 
the architecture used was 12, 12, 4. In each case, one or 
two hidden layers were required for the network to 
train effectively. 

For  both the neural and statistical models, the close- 
ness of  fit of  the predicted results to the true results 
was estimated by linear regression and comparing the 
correlation coefficient (R2). 

Table 7 shows the correlation for predictions based 
on the statistical and neural network models. For  all 
the data sets compared, the statistical regression 
method was more accurate and consistent in predicting 
the price and score of  the black teas from the chemical 
and sensory panel data. It is noteworthy that the inclu- 
sion of the intra-origin effect for score improved the fit 
and that this was most marked for the neural model. 

The neural network models were retrained using 
input neurons that corresponded to those selected by 
the stepwise regression procedure. The correlations are 
shown in Table 7. The results show an overall im- 
proved predictive capability of  the network. Addition- 
ally, limiting the size of the network also reduced the 
training time. 

Neural networks have been compared with linear re- 
gression methods in sensory evaluation of  tomato and 
peach (Thai & Shewfelt, 1991), in engineering (Nui et 
al., 1991) and in spectroscopic analysis (Gemperline et 
al., 1991). The statistical regression methods had a 

Table 7. Comparison of statistical and neural network re- 
gression models 

Data set Correlation (R 2) 

Statistical Neural Neural 
model model model 

(all inputs) (stat. inputs) 

(e) General 74.8 70.3 76.0 
Intra-origin 72.7 71.9 75.8 

(f) General 32.1 7-4 26-2 
Intra-origin 67.8 62-2 56-5 

(g) Strength and colour 49.9 10-2 38.9 
Bright and brisk 32.1 4-8 19.8 
Quality and flavour 26.8 17-9 14.2 
With milk 40.3 27.2 22-7 

slight advantage in numerical accuracy, but the neural 
computing techniques involved fewer steps during the 
analysis phase; this was particularly so when more than 
one parameter was predicted. This study has found 
similar results and suggests that stepwise regression could 
be used to 'prune' or 'trim' redundant input neurons. 

Two-layer networks as a method of  reducing the number 
of input neurons 

Examination of the weight matrix from a trained 
neural network has been proposed as a method of  
determining which input neurons are not contributing 
to network output (Long et al., 1991; Thai & Shewfelt, 
1991); inhibitory weights with a negative value indicate 
the regions which are not contributing to the outcome 

Table 8. Weight matrix of phenolic components in black tea 
for the prediction of price a 

General model Intra-regional 

X1,4 1-17 -0.08 
X5,7 -2.22 -0.51 
X8 -0.38 -0.86 
FG 1,2 0.11 0.23 
FG3 -0.41 0-76 
FG4 - 1.09 -0.40 
FG5 -0.89 -0.69 
F,TF1 1.89 2.44 
TF2 1-94 2.17 
TF3 1-84 0.27 
TF4 1-67 -0.99 
A - -  0.93 
B - -  -0.10 
K - -  -0.90 
M - -  0.02 
NI - -  1.06 
SL - -  -0.62 
T - -  - 1.42 
do - 1.08 - 1.23 

a X1,4, flavonol glycoside; X5,7, unknown; X8, flavonol gly- 
coside; FG1,2, rutin and isoquercetin; FG3, quercetin glyco- 
side; FG4 and FG5, kaempferol glycosides; F,TF1, flavonol 
aglycone and theaflavin; TF2, theaflavin-3-gallate; TF3, 
theaflavin-Y-gallate; TF4, theaflavin-3,Y-digallate; A, Assam; 
B, Bangladesh; K, Kenya; M, Malawi; NI, Northern India; 
SL, Sri Lanka; T, Tanzania; do, bias. 
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Table 9. Weight matrix of phenolic components in black tea 
for the prediction of score a 

General model Intra-regional 

X1,4 0-64 0.38 
X5,7 -0.08 -0-80 
X8 -0.58 - 1.38 
FG1,2 -2-37 0.05 
FG3 -0.36 -0.17 
FG4 0.65 -0.42 
FG5 1-82 0.66 
F,TF1 0-96 0.33 
TF2 0.37 0.41 
TF3 0-36 -0-28 
TF4 2-74 0.59 
A - -  1.16 
B - -  -0-62 
M - -  -0-85 
NI - -  0.27 
qb -2.14 0.59 

X 1,4, flavonol glycoside; X5,7, unknown; X8, flavonol gly- 
coside; FG1, 2, rutin and isoquercetin; FG3, quercetin glyco- 
side; FG4 and FG5, kaempferol glycosides; F,TFI, flavonol 
aglycone and theaflavin; TF2, theaflavin-3-gallate; TF3, 
theaflavin-Y-gallate; TF4, theaflavin-3,3'-digallate; A, Assam; 
B, Bangladesh; M, Malawi; NI, Northern India; qb, bias. 

of the network. In particular, two-layer networks have 
been proposed, as this simplifies the examination of the 
matrix (Thai & Shewfelt, 1991). 

Examples of  weight matrices from trained two-layer 
networks are given for each of  the above data Sets (e, f, 
g) in Tables 8-10. 

Considering Table 8 (Set e) for the prediction of tea 
price from the phenolic composition, in the general 
model, the network weights for F,TF1, TF2, TF3 and 
TF4 had the largest positive values compared to 
F,TF1, TF2 and FG5 as selected by stepwise regres- 
sion. In the intra-regional model, F,TF1 and TF2 were 
the most important compared to F,TF1 as chosen by 
stepwise regression. 

Considering Table 9 (Set f) for the prediction of tea 
score from the phenolic composition, in the general 

Table 10. Weight matrix of black tea sensory attributes for the 
prediction of score 

Sensory Professional tea-taster attributes 
panel 

attributes Strength Bright Quality With milk 
and colour and brisk and flavour 

Bitterness -0.62 2.74 4.70 1.95 
Brightness 0.46 2.31 0.79 1.52 
Brownness -0.77 - 1.74 -0.69 -0.67 
Clarity -1.31 -2.09 -2.46 -2.12 
Earthy 0.31 0.12 0-42 0.87 
Flowery 1.28 1.02 1-38 0.96 
Liveliness 0.92 0.14 -0.32 -0.77 
Redness 1.70 - 1-47 - 1.31 -0.60 
Smoky 1.36 0.27 -0.71 -0.17 
Sour -0.73 1.20 0.92 0.23 
Strength 0.41 2.06 0.21 1.96 
Astringency 0.49 -0.86 -0.23 -0.45 
qb - 1-87 -0.71 -0-97 -0.67 

model, the network weights for FG5 and TF4 had the 
largest positive values and agreed with those chosen by 
stepwise regression. In the intra-regional model, the 
network chose the same phenolic constituents as in the 
general model whereas stepwise regression selected X8. 

Regarding Table 10 (Set g) for the prediction of  tea 
score from sensory panel attributes, the largest weight 
for strength and colour was red and for all the other 
score terms the dominant weight was for bitter except 
for milk, where strength had the same weight. This is in 
good agreement with those sensory attributes chosen 
by stepwise regression. 

This suggests that the largest positive weights 
selected by inspection of the matrix from a two-layer 
neural network are similar to those chosen by stepwise 
regression methods. This may provide a method for 
simplifying the architecture of  neural networks. 

Training t ime required by neural networks 

The time necessary to train a neural network increases 
with the number of examples in the training set and the 
number of neurons in the model. Of the training sets 
used, the training time varied between 1.5 and 60.0 min 
but, once trained, prediction by the network is fast; 
only one pass through the network is needed. The 
computer used can also make a large difference; for 
example, a set that required 70 min training using 
an IBM XT needed only 4.5 min using an Elonex 
PC-320X. 

Ripley (1993) has shown that comparable statistical 
procedures require considerably less time to form a 
model than that by neural networks. In this study, 
where the training set is small and the neural architec- 
ture simple, neural networks can be trained in a short 
time (1.5 min). Furthermore, in regression analysis 
where the outcome of  several parameters is predicted, a 
simplified single neural network model may replace the 
need for a number of statistical models. 

CONCLUSION 

Neural networks performed as effectively as statistical 
methods for classifying black tea samples by their 
phenolic composition. In the case of  the xylem resin 
samples, the neural network offered a vast improve- 
ment; it is thought this may be because of the non-nor- 
mality of the resin acid composition. 

Compared to regression methods for the prediction 
of black tea score and price from their chemical and 
sensory panel attributes, in general, the neural network 
was less accurate. The accuracy of  the neural network 
improved and the training time reduced when it was 
trained using the variables chosen by stepwise regres- 
sion. Where accuracy is not the most important crite- 
rion (for example, in quality control), the neural net- 
work could have the advantage in predicting several 
parameters simultaneously. 

Neural networks have been described as a 'black 
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box'  and this clearly is a disadvantage for understand- 
ing the basis on which networks make their selection 
(Ripley, 1993). The most positive weights derived from 
two-layer trained neural networks approximated to the 
optimal variables selected by stepwise regression and 
this could be used as a method for assessing their selec- 
tion criteria. 

It is suggested that, alongside statistical procedures, 
neural networks are a useful tool in pattern recognition 
and regression of  chromatographic (GC and HPLC) and 
sensory data. Furthermore,  neural networks are simpler 
to use by the newcomer, as a sound knowledge of  
statistical methods is not required for their operation. 
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